求不定積分1.∫x^3/(3+x)dx 2.∫dx/(1+cosx)
題目:
求不定積分1.∫x^3/(3+x)dx 2.∫dx/(1+cosx)
解答:
.∫[x^3/(3+x)]dx
=∫ [(x^2-3)+ 9/(x+3) ] dx
= x^3/3 -3x + 9ln|x+3| + C
.∫dx/(1+cosx)
=(1/2)∫ 1/[cos(x/2)]^2 dx
= (1/2)∫ [sec(x/2)]^2 dx
= tan(x/2) + C
再問: 第一題=∫ [(x^2-3)+ 9/(x+3) ] dx 通分回去和原式不一樣啊 第二題最後那個1/2爲什麼不要 謝謝
再答: (1) .∫[x^3/(3+x)]dx =.∫[ x^2-3x+9- 27/(3+x)]dx = x^3/3 -3x^2+9x -27ln|3+x| +C (2) .∫dx/(1+cosx) =(1/2)∫ 1/[cos(x/2)]^2 dx = (1/2)∫ [sec(x/2)]^2 dx = ∫ [sec(x/2)]^2 d(x/2) = tan(x/2) + C
添加新評論