x^2/9-Y^2/16=1,過其右焦點f的直線交雙曲線於p.q兩點,pq的垂直平分線交x軸於點m,則mf/pq的值爲
題目:
x^2/9-Y^2/16=1,過其右焦點f的直線交雙曲線於p.q兩點,pq的垂直平分線交x軸於點m,則mf/pq的值爲
解答:
答案計算爲±6/5
或者等於零
(1):PF=FQ,MF/PQ=0
(2):設直線y=k(x-5),P(x1,y1),Q(x2,y2)
聯立雙曲線16x^2-9k^2(x-5)^2-144=0
x1 x2=90k^2/(9k^2-16)
根據第二定義
PQ=PF FQ=a-ex1 a-ex2=6-150k^2/(9k^2-16)
PQ中點M(x1/2 x2/2,y1/2 y2/2)
垂直平分線爲
y-(y1/2 y2/2)=-(x1/2 x2/2)/k
得到M的橫坐標
即|MF|=|5-125k^2/(9k^2-16)|
那麼很明顯
MF/PQ=±6/5,因爲有絕對值
添加新評論