求函數的微分:y= arctan(1-x^2)/1+x^2 具體算式與答案
題目:
求函數的微分:y= arctan(1-x^2)/1+x^2 具體算式與答案
解答:
y=arctan(1-x^2)/(1+x^2)
y'={[arctan(1-x^2)]'×(1+x^2)-arctan(1-x^2)×(1+x^2)『}/(1+x^2)^2
={1/[1+(1-x^2)^2]×(-2x)×(1+x^2)-arctan(1-x^2)×2x}/(1+x^2)^2
dy=-{2x×(1+x^2)/[1+(1-x^2)^2]+2x×arctan(1-x^2)}/(1+x^2)^2×dx
添加新評論