函數f(x)是以派/2爲最小正周期的函數,且f(派/3)=1,求f(17派/6)的值
題目:
函數f(x)是以派/2爲最小正周期的函數,且f(派/3)=1,求f(17派/6)的值
解答:
函數f(x)是以π/2爲最小正周期的函數f(x+π/2)=f(x)
f(17π/6)=f(5π/6+π/2*4)=f(5π/6)=f(π/3+π/2)=(fπ/3)
因爲f(π/3)=1,所以f(17π/6)=1
題目:
函數f(x)是以派/2爲最小正周期的函數,且f(派/3)=1,求f(17派/6)的值
解答:
函數f(x)是以π/2爲最小正周期的函數f(x+π/2)=f(x)
f(17π/6)=f(5π/6+π/2*4)=f(5π/6)=f(π/3+π/2)=(fπ/3)
因爲f(π/3)=1,所以f(17π/6)=1
添加新評論