已知x是一元二次方程x^2+3x-1=0的實數根,求代數式(x-3/3x^2-6x)/(x+2-5/x-2)的值
題目:
已知x是一元二次方程x^2+3x-1=0的實數根,求代數式(x-3/3x^2-6x)/(x+2-5/x-2)的值
解答:
(x-3/3x^2-6x)/(x+2-5/x-2)
={(x-3)/[3x(x-2)]}/{[(x+2)(x-2)-5]/(x-2)]}
={(x-3)/[3x(x-2)]}/[(x²-9)/(x-2)]
={(x-3)/[3x(x-2)]}/{[(x+3)(x-3)]/(x-2)]}
=1/[3x(x+3)]
=1/[3(x²+3x)]
因爲x是方程的根
那麼x²+3x-1=0
x²+3x=1
原式=1/3
添加新評論