設f(x)=g[xg^2(x)],其中g(x)可導,計算f'(x).
題目:
設f(x)=g[xg^2(x)],其中g(x)可導,計算f'(x).
解答:
f'(x)=g'[xg^2(x)]*[xg^2(x)]'
=g'[xg^2(x)]*{x'*g^2(x)+x*[g^2(x)]'}
=g'[xg^2(x)]*{g^2(x)+x*2g(x)*[g(x)]'}
=g'[xg^2(x)]*[g^2(x)+2xg(x)g'(x)]
題目:
設f(x)=g[xg^2(x)],其中g(x)可導,計算f'(x).
解答:
f'(x)=g'[xg^2(x)]*[xg^2(x)]'
=g'[xg^2(x)]*{x'*g^2(x)+x*[g^2(x)]'}
=g'[xg^2(x)]*{g^2(x)+x*2g(x)*[g(x)]'}
=g'[xg^2(x)]*[g^2(x)+2xg(x)g'(x)]
添加新評論