證明數列收斂,並求極限
題目:
證明數列收斂,並求極限
設a > 0 ,0 < X1< 1/a ,X n+1= X n (2 - a * X n) (n=1,2,…).證明{X n}收斂,並求lim(n→0)Xn.
解答:
Xn+1=Xn×(2-a*Xn)=-a×(Xn-1/a)²+1/a
→ (1/a-Xn+1)=a×(1/a-Xn)²
令Yn=1/a-Xn,則Yn+1=a×Yn² (Y1=1/a-X1,n≥2)
∴Yn+1=a^(2*n-1)×Y1^(2*n)=1/a×(a*Y1)^(2*n)
∴Xn+1=1/a-1/a×(a*Y1)^(2*n)
∵Y1=1/a-X1,即,0<Y1<1/a
∴0<a*Y1<1
∴0<(a*Y1)^(2*n)<1
∴0<Xn+1<1/a
當n→+∞時,(a*Y1)^(2*n)→0,Xn+1→1/a
添加新評論