爲什麼sinX+cosX的值域是[負根號2,根號2]?
題目:
爲什麼sinX+cosX的值域是[負根號2,根號2]?
解答:
令 y=sinx+cosx
則 y=√2(sinxcosπ/4+cosxsinπ/4)=√2sin(x+π/4)
因爲 -1≤sin(x+π/4)≤1
所以,-√2≤y≤√2
即 -√2≤sinx+cosx≤√2
題目:
爲什麼sinX+cosX的值域是[負根號2,根號2]?
解答:
令 y=sinx+cosx
則 y=√2(sinxcosπ/4+cosxsinπ/4)=√2sin(x+π/4)
因爲 -1≤sin(x+π/4)≤1
所以,-√2≤y≤√2
即 -√2≤sinx+cosx≤√2
添加新評論