求高等數學這一題詳解 :已知2f(x)+f(1-x)=e^x(讀作e的x次方) 則f(x)=?
題目:
求高等數學這一題詳解 :已知2f(x)+f(1-x)=e^x(讀作e的x次方) 則f(x)=?
解答:
取x=1-y,帶入上式中
得到2f(1-y)+f(y)=e^(1-y)
把y換成x,得到2f(1-x)+f(x)=e^(1-x)
上式與題目式子*2,想減,即可得f(x)=【2e^x-e^(1-x)】/3
再問: 那這一題呢 lim(x趨於∞) 3x^2+5/5x+3*sin2/x 等於多少 謝了
再答: 你的題目寫的我不太能分清分子與分母 可以重新提問嗎?謝謝
再問: x趨於∞(3x^2+5除以5x+3) 乘於sin2/x(這後面讀作x分之2)
再答: 可以設x=1/y x趨於無窮,則y-0 上式變爲,通分之後(5y^2+3除以3y^2+5y)乘以sin2y x-0時 sinx/x的極限是1 所以極限是6/5
添加新評論