若X,Y滿足條件:X^2+Y^2-2X+4Y=0,求X-2Y的最大值?

題目:

若X,Y滿足條件:X^2+Y^2-2X+4Y=0,求X-2Y的最大值?

解答:

X^2+Y^2-2X+4Y=0,求X-2Y的最大值?
x^2+y^2-2x+4y=(x-1)^2+(y+2)^2=5 可以看作是一個圓,
令 x-2y=k,可以看作是一條直線,直線與圓相交或者相切,畫圖可以看出當在左上方向相切最小,右下相切最大,此時 k 的值可以通過圓心到直線的距離等於 √5 算出,
√5 =|1+4-k|/√5 k=0 或者k=10
x-2y的最大值 k=10

添加新評論

暱稱
郵箱
網站