已知數列{An}的前n項和爲Sn,A1=A2=1,bn=nSn+(n+2)An,數列{bn}是公差爲d的等差數列,
題目:
已知數列{An}的前n項和爲Sn,A1=A2=1,bn=nSn+(n+2)An,數列{bn}是公差爲d的等差數列,
證(A1A2.An)(S1.Sn)
解答:
易知b1=4,b2=8,因此bn=4n,得4=sn+(n+2)/n*a(n)=sn+(n+2)/n*(sn-s(n-1)),因此sn=(n+2)/(2n+2)*s(n-1)+2n/(n+1),易用歸納法證明sn0知an>0.注意到s4=13/4>3,於是sn>3,當n>=4時,故an
添加新評論